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SUMMARY

Metamorphosis, or morphing, is the gradual transformation of one shape into another. It generally
consists of two subproblems: the correspondence problem and the interpolation problem. This
paper presents a solution to the interpolation problem of transforming one polyhedral model into
another. It is an extension of the intrinsic shape interpolation scheme (T. W. Sederberg, P. Gao,
G. Wang and H. Mu, ‘2-D shape blending: an intrinsic solution to the vertex path problem,
SIGGRAPH '93 pp. 15-18.) for 2D polygons. Rather than considering a polyhedron as a set of
independent points or faces, our solution treats a polyhedron as a graph representing the
interrelations between faces. Intrinsic shape parameters, such as dihedral angles and edge lengths
that interrelate the vertices and faces in the two graphs, are used for interpolation. This approach
produces more satisfactory results than the linear or cubic curve paths would, and is translation
and rotation invariant. [0 1997 by John Wiley & Sons, Ltd.
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planar graph

1. INTRODUCTION

Metamorphosis, or morphing, is the gradual transformation of one shape into another.
Given two polyhedral models, a metamorphosis algorithm determines the in-between
polyhedra to animate the process of metamorphosis. It is best illustrated in Figure 1,
in which the leftmost object is morphed into the rightmost. The upper and lower
sequences show the morphing in two possible manners.

This paper addresses the metamorphosis of 3-D polyhedral models. Metamorphosis
usually consists of two subproblerishe correspondence problem and the inter-
polation problem. A correspondence specifies which face, edge or vertex of one
model is mapped to which face, edge, vertex of the other model. A correspondence
algorithm determines how the face/edge/vertex is transformed during the animation
according to the particular correspondence.

In the existing approaches to metamorph®sSithe correspondence problem is the
main concern and the interpolation problem is given less emphasis. Linear or Hermite
cubic vertex paths are usually used. Poor visual effects, such as unnatural shrinkage
and flipping inside out of the objects, often occur in these interpolation schemes. A
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Figure 1. Morphing of two L-shapes

solution to the interpolation problem of 2-D polygons based on the intrinsic shape
definition of polygons has recently been proposel. is particularly useful in
animating figures of similar shapes and successfully eliminates various unnaturally
formings (shrinking and kinking effects) that result from the linear vertex inter-
polation. Intrinsic parameters are invariant under translation and rotation, locally
defined, and are therefore ideal candidates for shape interpolation. Unfortunately, the
intrinsic shape interpolation methodorks only for 2-D polygons. Intrinsic definition

for polygons is simple: a polygon can be defined by a series of the intrinsic
parameters, edge lengths and interior angles, enumerated in either clockwise or
counterclockwise direction. However, no intrinsic definition is available for polyhedra.
There are 3D intrinsic parameters but they are highly interdependent. It is not known
how to define a polyhedron by enumerating a series of intrinsic parameters. Therefore,
it is difficult to use these parameters in 3-D metamorphosis. Thus, morphing 3-D
polyhedral models using intrinsic shape parameters becomes the natural, and challen-
ging, next step in research.

This paper presents a solution to the interpolation problem of transforming one
polyhedral model into another using intrinsic shape parameters. We will restrict our
discussion to genus zero polyhedra, i.e. polyhedra with no handles. The proposed
method is inspired by the intrinsic shape interpolafofor 2-D polygons. Instead
of being treated as a collection of independent points or faces, an object is considered
to be defined by a planar graph representing the interrelations between vertices; its
dual graph is also used to represent the interrelations between faces. The method is
not restricted to one-to-one correspondence, and experience shows that it is feature
preserving and produces visually natural results.

After a brief review of previous work in Section 2, our method is outlined in
Section 3. Section 4 presents the main steps of the algorithm: the interpolations of
the face adjacency and the vertex adjacency graphs. Section 5 provides a complete
description of the algorithm. Some properties and experimental results of the algor-
ithm are discussed in Section 6. The paper concludes in Section 7 with a discussion
of the improvements in our algorithm over previous work and directions for future
research.
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2. PREVIOUS WORK

Most existing techniques for solving the interpolation problem can be classified into
one of the following categories: (a) linear interpolation; (b) independent interpolation
of each vertex pair using a curved path; (c) intrinsic shape interpolation.

(a) Linear vertex path

In linear interpolation, each pair of corresponding points is linearly interpolated
independently. Usually, only the corresponding vertices are interpolated. It is the
most widely used technique both in research and commercial softwares. The super-
object techniqueand the method of minimizing the distances or corresponding face
centroids and vertex pafrdboth use the linear vertex path. It is simple, compu-
tationally inexpensive, suitable for real-time animation, and works well for morphing
highly dissimilar objects.

In the super-object technigtieand the technique of minimizing distances of
corresponding centroids and verticethe interpolation algorithms consider an object
as a collection of independent points. Shrinkage usually occurs for two objects
differing by a rotation. In the worst case the animated model can degenerate into a
zero or negative volume. For example, consider the metamorphosis of two congruent
tetrahedra, one of which is 180opposite the other. In this case, an in-between
tetrahedron can flip totally inside out, resulting in a negative volume. Figure 2 shows
morphing one tetrahedron into another similar one at tinw0,0.2,0.4,0.6,0.8,1,
from right to left. The instance at=0.4 totally flips inside out.

From a theoretical point of view, we can consider that the Minkowski sum
techniqué and the alpha-shape geometric morpBinge linear interpolation irE3
and E4, respectively. The Minkowski sum technique has proved suitable for metamor-
phosis in which at least one object is convex. However, for metamorphosis between
two non-convex objects, features common to both objects are not preserved. For
example, when morphing from a dog to a cow, the mixed animal may have more
than four legs! The reason can be best seen in Figure 3 in transforming a ‘C’ shape
to itself. Furthermore, even when the two input objects are identical but concave,
the in-between object is not the same as the input objects. Thus, the Minkowski
sum approach is natlentity preserving

The alpha shape morphing metfduas the drawback that the intermediate object
generated may not be a valid polyhedron or consists of a collection of disjoint
polyhedra, even though the two input objects are connected polyhedra.

Figure 2. Interpolation between two tetrahedra by the linear vertex path
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t=0 t=1/3 t=1/2 t=2/3 t=1

Figure 3. Minkowski sum for two ‘C’ shapes

(b) Independent interpolation of each vertex pair using a curved path

A Hermite cubic path with end tangents set equal to the normals at the vertices
interpolated” and a quadratic Baer vertex patt have also been proposed. Like
using the linear vertex path, these approaches do not exploit relationships between
vertices. These methods may work well for highly dissimilar objects but fail to
preserve the features common to the two input objects.

(c) Intrinsic shape interpolation

The intrinsic shape interpolation for 2-D polygons has proved to be successful. It
uses the intrinsic relation between the vertices of a polygon, described by edge
lengths and vertex angles. It is showhat interpolating the edge lengths and vertex
angles generally produces more satisfactory in-between shapes than the linear vertex
path would. However, this method works only for 2-D polygons with a one-to-
one correspondence.

There are still some other special techniques. For example, the shape blending
using the star-skeleton representation for 2-D polygbrselves many problems
encountered in the intrinsic shape interpolatidout it seems more difficult to
generalize this method to blending of 3-D polyhedra.

3. THE PROPOSED SOLUTION

Let A and B be two input polyhedral models. In the metamorphosis betweeamnd

B, A is transformed toB continuously fromt=0. to t=1 under a prescribed
correspondence between the vertices of the input polyhedra. In this paper, it is
assumed that the correspondence is given as an input to the interpolation algorithm.
Let A% B be the in-between polyhedral model &f and B at time t under a
correspondence. When there is no danger of confusion, we denigig) = A ¢ B.

3.1. Basic criteria

The natural morphing process between two objects is, in general, not unique. For
instance, there is no consensus on which of the morphing paths shown in Figure 1
is more natural. However, we believe that there are some basic criteria that a
morphing algorithm should satisfy. In the following, we propose four such basic
criteria, which have guided us in the search for a 3-D interpolation algorithm. We
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will see that our interpolation algorithm satisfies the four criteria. Agdenote the
translation of objectA by vectorx. Let Ry(a) denote the rotation about axis$ by
an anglea.

1. Identity preservingt e [0, 1], A 0% A=A.

2. Translation invariant Ot e [0, 1], A, 0% B, = (A 0% B), for somez. Herez
is a point on the line segment connectirgand y. If the animation speed of
the morphing process is unifornz,= (1 —t)x + ty.

3. Rotation invariant Ot e [0, 1], (R (x)A) 0% (R,(B)B) = R.(y)(A 0% B) for
some+y andc.

4. Feature preservingif there are features common to both input objects, the
features should be preserved during the metamorphosis. One example is preserv-
ing the legs or the head of two different animals during morphing.

3.2. Basic ideas

In the interpolation algorithm, rather than being treated as a collection of inde-
pendent points, a polyhedral model is considered asramted plane graphcalled
the vertex adjacency graph (VAGThe vertex adjacency graph is composed of the
vertices and edges of the polyhedroiihe face adjacency graph (FAG)hich can
be thought of as the dual of the vertex adjacency graph, is used to represent the
interrelations between faces. The nodes of the face adjacency graph and vertex
adjacency graph are interrelated by intrinsic parameters, such as edge lengths,
dihedral angles and interior angles. These parameters are invariant under rotation
and translation, and locally defined. We will use the intrinsic parameters to interpolate
the face adjacency graph and the vertex adjacency graph.

Let FAGY, FAGP, and FAGY® be the face adjacency graphs Af B, and M(t),
respectively. LetVAG", VAG?, and VAG'® be the vertex adjacency graphs Af B,
and M(t), respectively.

It is possible to just interpolate thEAG* and FAG® to produce the in-between
polyhedral model for animation and the algorithm is translation and rotation invariant,
and also identity-preserving when the correspondence is the identity one. However,
experimental results shown undesirable visual defects. We developed an alogrithm
to solve the problem and achieve the same properties (please see Reference 12 for
further details). The algorithm consists of two phases: (1) interpolddA&* and
FAGE to obtainFAGV®, discussed in Section 4.1; (2) interpolatifgG* and VAG®
using the information inFAGM® to obtain VAG'®, discussed in Section 4.2. The
in-between polyhedral modeM(t) is then uniquely determined by and generated
from VAG'®,

3.3. Representations of polyhedral models

A polyhedron can be represented as a planar graph. Since a planar graph can
have more than one embedding on the plane, we will restrict ourselves to the
particular embedding that represents the topology of the polyhedron. An embedded
planar graph is called plane graph In order to distinguish a plane graph from its
mirror-image graph, we assign an orientatioto the plane graph. This results in
an oriented plane graph
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Definition 3.1

An oriented plane graph is a plane graph in which each circuit bounding a region
is a cyclically ordered set of links that bound the region counterclockwise.

Definition 3.2

Let P be a polyhedron. The vertex adjacent graph (VAG)Pofis an oriented
plane graph associated with Each node of the VAG represents a vertexPoand
there is a link between two nodes if the corresponding vertices are linked by an
edge ofP. Each region of VAG corresponds to a face Raf The order of the links
around the region of VAG is the same as that of the corresponding edges around
the corresponding face iR. Each node contains the vertex coordinates.

Definition 3.3

Let P be a polyhedron. The face adjacency graph (FAG)Pofs an oriented
plane graph associated with. Each node of the FAG represents a facePoaind
there is a link between two nodes if the corresponding faces share a common edge.
A node contains the outward unit normal vector of the corresponding face. The link
connecting two nodes contains a flag of valk(positive), —(negative), or=(coplanar),
indicating that the corresponding faces form a convex dihedral angle, concave
dihedral angle, or the two faces are coplanar, respectively.

We use the VAG as the primary representation of a polyhedral model since it
represents a polyhedron uniquely. Assume that the flag in FAG takes+ooly—
for simplicity. Each region in the FAG corresponds to a vertex of the polyhedron.
Note that a FAG cannot uniquely define a polyhedron. Additional geometric infor-
mation is needed to make the FAG a complete representation of a polyHédken.
plane graphs, FAG and VAG are the dual of each other, and the FAG of a
polyhedron can be constructed if the VAG of the polyhedron is given. We say that
two VAGs or two FAGs ardopologically equivalentf the vertices, edges and faces
of the underlying graphs can be put in a one-to-one correspondence that keeps the
ordering of the bounding links surrounding every pair of corresponding regions.
Suppose polyhedroR hasn faces andm vertices. The FAG and VAG oP will
be denoted byFAG and VAG respectively. A notation with the symbol of a
particular polyhedron, such as B, andM(t), as superscript, will refer to the element
for that polyhedron. When without superscript, the notation defaults to the general
genus zero polyhedron.

4. INTERPOLATION OF INTRINSIC PARAMETERS

A one-to-one correspondence between VAend VAG is first assumed for sim-
plicity; interpolation under the general correspondence is discussed in Section 5.2.
Under a one-to-one correspondence, VAG®AGE, and VAG'® are topologically
equivalent, so are FAG FAGP, and FAQ'®, In this case,n*=n®=n"® and

m* =m®=nmMO, denoted as andm. We first discuss the computation of outward
normals and vertex coordinates by intrinsic relations in Subsections 4.1 and 4.2. A
method of stabilizing the algorithm is proposed in Section 4.3.
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4.1. Interpolation of face adjacency graphs

Let fM® be theith face of the in-between polyhedral modé(t), and NM® be
the outward unit normal of®, By interpolating FAG and FAG, we mean to
compute the normal vectoNM® at timet, for i =0,1,...n—-1. We will start with
two initial faces, fy)® andf)'®, and then use the intrinsic relation between faces to
computeNM® for i =2,3,...n—1, by propagation.

Computing the first two normals

To proceed, we introduce theutface normalof an edge. Leff, and f, be two
adjacent faces sharing an edge in a polyhedron.T,gtbe the unit vector parallel
to the edge and oriented counterclockwise with respect to the ffacEhe outface
normal g , to the edge with respect t, is defined as the unit vector, , x Np.
That is, e, is parallel to facef, and points towards the exterior &f. Figure 4
illustrates the definition in two different situations. Lkt, be the dihedral angle
between the facef, andf,.

The normal vectorNY©® is interpolated using the shortest arc on the Gaussian
sphere connecting\g andNB NY® can be computed if the outface andi® and
the outface normatly'®® are known The outface normef{’ is computed as follows.
Since N4 ande}, are orthogonal FA = {N4,e5.,Nj x e} } is an orthogonal frame.
Similarly, FB = {N§,e5 ,N§ x €5} is also an orthogonal frame. LeK(t), t in [0,1],
be the rotational motion about a fixed axis that rotdésnto F&, i.e. K(0)=1 and
K(L)FA=FB. Then setey'® = K(t)e},. The dihedral anglel}{® is computed as
(1 -1)I5,+ &P by anglel¥®. To make the computation dfy'® stable, we choose
the first two faces such that mirlgf,I§,} is maximized.

Propagation

Supposef,, f,, andf, are three consecutive nodes around a region of the FAG.
Let 6.,, be the angle by which to rotate, . to e,, aboutN,, called theoutface
angle Denote6 =6, , for short. ThenN,, N,, and N, are related by the following
relations (see Figure 5):

Q),a = RNb(G)eb,c (1)
Na = RNbxebya(I b,a)Nb (2)

(b)

Figure 4. Definition of the outface normaj, ¢ (a) convex edge; (b) reflexive edge
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(b)

Figure 5. Relation of )N N,, and N: (a) f¥Y® and §!® share a convex edge; (Y® and §!® share a
reflexive edge

Since the in-between polyhedrdM(t) should also satisfy these two relations, the equa-
tions

& = Ro(6M©)ebd? ©)

NY'® = Ry oI5 NE'O 4)

will be used to computd\¥® whenNY® are known. The term®®andIM® used
in equations (3) and (4) are computed by interpolation:

OM® = (1-1)0A + tOB ()
I{f\)/,le(;) = (1_t)|€,a +1 E,a (6)

where 64, 68, 15, are directly computed from FAGand FAG. Thus, /0 is
determined by equation (3) and¥® is then determined by equation (4). In other
words, given FAG and FAG, NY©® can be determined iNM® andNY® are known.
ConsequentlyNM® i =23, . .n- 1, can be computed ond'® andNY® are known.
There are numerous choices of the order of compulMf, and breadth-first search
is used in our implementation.

4.2. Interpolation of vertex adjacency graphs

Let VMO be thejth vertex of M(t), and let V'® be the vertex co-ordinates of
VMO, Our goal is to compute the vertex co-ordinatg¥® for j=0,1,... m-1. We
first compute two starting vertices which are shared by the two starting faces in the
interpolation of FAG and FAG. Then using the intrinsic relation between vertices,
we computevM® by propagation forj =2,3,...m-1.

Computing the first two vertices

Without loss of generality, we denote the two vertices of the edge shared by the
facesf, and f; by V, and V,, oriented such thaw/; follows V, counterclockwise
around f,. Let I,, be the length of the edgevy, First, set
WO = (1-t)vo +tvg. ThenA'® is  computed such_that the direction of
WO — O is parallel toNY® x e andI¥P = (1 - t)I5, + tI§ ;.
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Propagation

SupposeV,, V,, and V, are three consecutive vertices_of a fdgelet &, , be the
unit edge vector parallel to the direction wf-v, and let6., , be the interior angle
LNV VpV.. When V, V,, and V. take the counterclockwise order arourd 6 is
negative; otherwise, it is positive. We write=0., ., for short. Thenv,, v, and v,
are related by (Figure 6):

Va =Vp + Tp.aRy(0)8c (7
This relation gives the equation
WO = yMO + TMO R M(t)(eM(t))eg/'(t) (8)

to computev}® whenw® andvM® are known. The term@M® andTM® in equation
(8) are computed by the mterpolatlon

OMO = (1-t)6A + 6B (9)
MO = (1-t)18, + 1B, (10)

Thus, whenw'® andvy'® are knownyvM®, j=23,.. . -1 can be determined by
propagation. Agaln breadth first search is used for propagation.

As FAG and VAG are dual to each other, the interpolation of VAG should be
similar to that of FAG. However, as the normdl'® used for computing/¥® by
equation (8) is stored in FA®Y, FAGM® has to be computed first.

4.3. Stability

The interpolation of FAG or VAG is a one-pass algorithm. The result of the
interpolation depends on the initial values and the order of computation. A small
perturbation of initial values can introduce a big difference in later stages of
computation. In equation (8), whevy'® - v'O|| < I}'0, a perturbatiorbvi'® to vy'®
can make a big change #'®. The same is true of equation (4). Therefore, if the
intial values are not set properly, the in-between object can be highly distorted. We

Figure 6. Relation of y v, and v
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circumvent this problem by using a heuristic to make the algorithm numerically
more stable.

In the intermediate stage of interpolating VAGnd VAG, suppose we are to
compute the vectowY®. Then, we first have to find a pair of verticegy!® and
WO, whose co-ordinates are already computed, such W&t V'O, andV¥® are
consecutive around a face of VAG. Let there bed, pairs of such vertices for
VY, denoted byvh® andVy®, k=0,1,. .. -1 (see Figure 7). Each of thesg pairs
is used to compute & with a Welght

= v fima (11)

by.c’ 'y, aK

The final VM® is computed as

a
s M)
> WayVay

k=0

The choice of the weight by equation (11) is made so that a pair
VO, vii® with smaller lengtHivi® — vi®|| contributes less to the fina/®. The same
pr|nC|pe applies to the mterpolatlon of FAGand FAG. That is, NM® is assigned
the direction of2w, Ny© with the weightw,, given by

= M@ /IMQ (12)

by.c’ by.a

Experiments show that the above remedy greatly alleviates the numerical instability
of vM® andNY®, and leads to a more robust algorithm.

5. COMPLETE ALGORITHM
5.1. General correspondence

In general, for two input polyhedrA andB, VAG* and VAG® are not necessarily
topologically equivalent. Then a general correspondence has to be used, in which

M@®

Figure 7. Computing Y®
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one vertex ofA may correspond to many vertices, edges or face®,0and vice

versa. Our approach to the case of the general correspondence follows the super-object
approaclh?, which also discusses the problem of establishing a corresponéi&hteo
concepts are needed to define a general correspondenceertiesx correspondence
mappingand thesuper-graph

Let M be a polyhedral model. Lel.V and AV be the set of nodes of VAG
and VAG", respectively. The termsertexand nodewill be used interchangeably in
the section. A vertex correspondence mappgmngM.V — AV is defined ashvi(x) =
y if vertex x of VAGM corresponds to the vertex of VAGA We usehv(VAGY)
to denote the graph with its set of nodes being the rangevbfand its set of links
being all the links mapped from those of VAG

Let M.E and AE be the set of links VA® and VAG*, respectively. LetM.F
andA.F be the set of faces of VA% and VAG", respectively. We cahv:M.V — AV
a valid vertex correspondence mappinfgit satisfies the following conditions: (1)
hv* is onto; (2) If (m,m,) € M.E, then either [fjvi(m,),hvA(m,)) € A.E or hvA(m,) =
hvim,) e AV, (3) For anye € AE, ({Im;,m,) € M.E such that fvA(m,),hvi(m,)) =
e, and (4) For every face € M.F, r is mapped to either a face with the same
orientation, or an edge, or a vertex é8f If hv* satisfies conditions 1, 2, and 3,
thenhvi(VAGW) is isomorphic to VAG, and the only difference betwedw*(VAGM)
and VAG", as oriented plane graphs, may be the embeddings and orientatiovf. If
further satisfies condition 4, them”(VAGM) is topologically equivalent to VAG
In this case, we call VA® a super-graphof VAGA.

The general correspondence betwe®rand B is defined by (1) a super-graph
VAGM of both VAG* and VAG?; and (2) two valid vertex correspondence mappings
hviM.V — AV and h\®:M.V — B.V. In this paper, it is assumed that the correspon-
dence is given as an input; the super-graph VAG used as the underlying graph
of VAGM® and the mapping&v* and hv® are known.

5.2. Interpolation under a general correspondence

To interpolate VAG and VAG® under a general correspondence, we first replace
VAG* and VAG® by two vertex adjacency graphs which are topologically equivalent
to VAGMO, so that the method used for the case of one-to-one correspondence can
be directly applied. However, this may cause degeneracy problems in interpolating
the intrinsic parameters and using the relations (3), (4), (5), (8) and (9). We will
resolve it by using the intrinsic shape information in one object to approximate the
degenerate part of another object.

To apply the method for one-to-one correspondence here, AVidGeplaced by a
vertex adjacency graph, denoted VAG which is topologically equivalent to VA®Y
such that ifhvA(VY) = Vo, Wa = vi. FAGMa is constructed from VA®a. We renumber
the vertices of VAG and faces of FAGa in such a way thatvV}'a of VAGMa
corresponds toVM® of VAGM®, and f¥a of FAGMa corresponds tofM® of
FAGM®, VAGE is replaced by a similarly defined VAG. FAGMs is constructed simi-
larly.

Unfortunately, the edges and faces of VAGVAGMs, FAGMA, and FAG! may
be degenerate. If a fac®~ is mapped to an edge or a vertex Af the normal
vector NMa is not well defined; consequently, the related outface angles and outface
normals are not defined. If an edgeYe, VM'A) of VAGMA is mapped to a vertex of
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VAG*, the edge tanger@ys is not defined and neither are the related interior angles.
The same problem occurs in VA®and FAG"s. Thus, equations (3), (4) and (5)
cannot be used for the interpolation of FAGand FAG"s, neither can equations (8)

and (9) for the interpolation of VA& and VAG"e. We overcome this problem by
adapting the intrinsic shape information in one object to the corresponding degenerate
part of another object.

The method of approximating the undefined outward normdls andNYe is
similar to the idea of interpolating FAGand FAG in Subsection 4.1. Assume that
there is at least one pair of well-defined corresponding outface normals
efa andels to serve as the start point of the approximation. This condition is
satisfied in most practical situations.

SupposeMa is mapped to a vertex or an edge of VAGhus NY4 is not defined.
Assume thatf¥s is well defined, for otherwise, the super-graph can always be
simplified so that the assumption holds. To approximd}ts, first find two pairs of
corresponding faces)s, f¥s, andf)'a andf}e, with well-defined outward normals such
that fMa, fMa andf¥a, andf¥s, f¥'s, andf¥e are consecutive around corresponding
regions in FAG'» and FAG"s, respectively. Let the total number of such pairs be
Ko Denote these pairs of faces #% andfg s k=0,1,.. .k, - 1. Each of these pairs
is used to compute only'a. Here we simply us@"ato denotedys, ... To simulate
the non-degenerate case, the normdNysa can be computed by
eha, = RNgAkA(OMA)e@,"KQk andNya = Rnpaxella, (IMa, )NMA. However, as the outface nor-

mal e, and the outface anglé™~ in the first equation are not defined, we replace
HMa lby its counterpart in VA®s, ie.settMA=6Ms. As a result,
eb, is computed byeha, = Ruya(6Me)eha,, k=0,1,...xa~1. The outward normal

Ny'a is assigned the unit vector dife;' Ny~ Now, the outface normals and edge
tangents related tdY'a can be determined from¥~ and the related outface angles
and interior angles can also easily be determined. The undefined quantities in
VAGMs and FAG's are approximated similarly.

6. RESULTS AND DISCUSSION

Property 6.1

If A and B are identical polyhedra and the given correspondence is the identity
correspondence, i.e. all vertices, edges, and facésaofrrespond to their counterparts
of B, then M(t)=A=B for all t € [0,1].

The proof is trivial and therefore omitted. By this property, our algorithm is
identity preserving.

As we can see, all operations—approximating normals, computing initial normals
and vertex co-ordinates, stabilized propagation of computing normals and vertex co-
ordinates—involve only the interpolation of intrinsic parameters, which are invariant
under rotation and translation. So, we can prove the following two properties.

Property 6.2
The intrinsic interpolation is rotation invariant.
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Figure 8. Interpolation between two tetrahedra

Figure 9. Interpolation between two human figures

Figure 10. Interpolation between two human figures using linear vertex path
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Figure 11. Morphing under a general correspondence

Property 6.3

The intrinsic interpolation is translation invariant, if the centre of gravityMif)
is put at (1-t)G*+tGB, where G* and G® are the centres of gravity ofA and
B, respectively.

Experimental results

The algorithm has been implemented and tested on SGI Indigo/XZ graphics
workstations with R4000 CPU. Experiments shown that the algorithm works well
for many cases where the two morphed objects have similar features, and if the
correspondence is properly specified, the features are preserved during morphing.
Figure 1 is an example showing different ways of morphing between two objects,
in which the only difference is the correspondence. Figure 8 shows the interpolation
of two tetrahedra that are used in Figure 2. The objects are placed along the curved
path of motion for illustration. Notice that the in-between tetrahedron is rotating and
deforming at the same time, thus avoiding the flipping-inside-out problem that
appears in Figure 2 using the linear vertex path.

Figure 9 shows the interpolation of two human figures facing us. The figure is
rotating his body, and meanwhile, turning his right arm. Figure 10 shows the
interpolation of the same Figure as in Figure 9, using the linear vertex path. Notice
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that the in-between human figures are unnaturally thin and the right arm is severely
distorted. Thus, a distinct advantage of our algorithm is that if it is capable of
turning the arm and the body in two different directions simultaneously.

One is often tempted to thiAkkhat properly tuning the orientation of one object
and simply using linear vertex path or Minkowski sum can produce a desired in-
between model. However, a model like the one in Figure 9 may have a lot of
prominent features, e.g. body and arms, turning in different directions at the same
time. In this case, the approach of tuning the relative orientation of the input objects
can never produce a desired in-between object. Thus, that our intrinsic interpolation
algorithm is able to turn the arm and the body in two different directions at the
same time is a distinct advantage.

Figure 11 shows the morphing of two solids at the top and bottom under a general
correspondence with the linear interpolation shown on the right and the intrinsic
interpolation on the left. The approximated normal is shown as the white arrow.
The flipping inside out problem on the right at=0.2 is avoided by the intrinsic
interpolation. Figure 12 shows how the degenerated normals are approximated at a
convex edge and a concave edge in morphing with the linear interpolation shown
on the right and the intrinsic interpolation on the left. Shrinkage and flip-around are
avoided in the interpolation.

7. CONCLUSIONS AND FUTURE RESEARCH

While the criteria for morphing can be artistic, this paper proposes four basic criteria
a morphing algorithm should satisfy, and presents an interpolation algorithm for 3-
D morphing of polyhedral models. The interpolation algorithm is translation and

(a) (b)

Figure 12. Approximating normal: (a) convex edge; (b) reflexive edge
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rotation invariant, and is identity preserving if the correspondence is the identity
correspondence. It is also demonstrated in practice that the algorithm preserves the
characteristic features common to both input objects and avoids the shrinkage problem
with the linear vertex interpolation.

Several aspects of the interpolation problem are still under investigation. First,
what are the other possible representations for the intrinsic relations? Second, can
we eliminate the dependency on the order of searching uncomputed nodes in the
interpolation of FAG or VAG? Third, there is no guarantee that the in-between
object produced by our algorithm does not have self-intersection. Up to now, no
known published work on the interpolation problem can effectively solve this prob-
lem.

Another problem that is currently under investigation is the design of a correspon-
dence algorithm that can work well together with our intrinsic interpolation algorithm.
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